Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122138, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36442343

RESUMO

Sulfonamides (SAs) are widely used in many fields because of their advantages, including low price, wide antibacterial spectrum, and high stability. However, their accumulation in the human body leads to a variety of serious diseases. Therefore, it is necessary to design a convenient, effective, and sensitive method to detect SAs. Moreover, the fluorescence excitation spectrum has rich information characteristics, especially for the interaction between fluorophore and quencher via various mechanisms. However, the excitation wavelength-guided sensor array construction does not draw proper attention. To address these issues, we used BSA-AuNCs as a single probe to construct a sensor array for the detection of five SAs. The selected SAs showed different quenching effects on the fluorescence intensities of BSA-AuNCs. The changes in the fluorescence intensity at different excitation wavelengths (λ = 230, 250, and 280 nm) have been applied to construct our sensor array and address the distinguishability between the selected SAs. With helping of pattern recognition methods, five different SAs have been identified at three different concentrations. Additionally, qualitative analysis at different moral ratios and quantitative analysis at nanogram concentrations have been considered. Moreover, the proposed sensor array was successfully used to distinguish between different SAs in commercial milk with an accuracy of 100 %. This study provides a simple and powerful approach to SAs detection. Also, it shows a broad application prospect in the field of food and drug monitoring.


Assuntos
Nanopartículas Metálicas , Humanos , Espectrometria de Fluorescência , Ouro , Fluorescência , Sulfonamidas , Corantes Fluorescentes , Sulfanilamida
2.
Anal Bioanal Chem ; 414(29-30): 8365-8378, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36280626

RESUMO

Different acquisition data approaches have been used to fetch the fluorescence spectra. However, the comparison between them is rare. Also, the extendability of a sensor array, which can work with heavy metal ions and other types of analytes, is scarce. In this study, we used first- and second-order fluorescent data generated by 6-Aza-2-thiothymine-gold nanocluster (ATT-AuNCs) as a single probe along with machine learning to distinguish between a group of heavy metal ions. Moreover, the dimensionality reduction was carried out for the different acquisition data approaches. In our case, the accuracy of different machine learning algorithms using first-order data outperforms the second-order data before and after the dimensionality reduction. For proving the extendibility of this approach, four anions were used as an example. As expected, the same finding has been found. Furthermore, random forest (RF) showed more stable and accurate results than other models. Also, linear discriminant analysis (LDA) gave acceptable accuracy in the analysis of the high-dimensionality data. Accordingly, using LDA in high-dimensionality data (the first- and second-order data) analysis was highlighted for discrimination between the selected heavy metal ions in different concentrations and in different molar ratios, as well as in real samples. Also, the same method was applied for the anion's discrimination, and LDA gave an excellent separation ability. Moreover, LDA was able to differentiate between all the selected analytes with excellent separation ability. Additionally, the quantitative detection was considered using a wide concentration range of Cd2+, and the LOD was 60.40 nM. Therefore, we believe that our approach opens new avenues for linking analytical chemistry, especially sensor array chemistry, with machine learning.


Assuntos
Nanopartículas Metálicas , Metais Pesados , Ouro , Metais Pesados/análise , Espectrometria de Fluorescência/métodos , Íons , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...